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Abstract

The approach of using chamber geometry (in the forms of stepped-wall and multichambers)
in conjunction with using a repeatable igniter was investigated as a means for controlling the
interior ballistic variability in 20-mm and 30-mm bulk-loaded liquid propellant guns (BLPGs).
Full-scale, gun firing tests were conducted using the liquid monopropellant XM46 to
experimentally develop a database for assessing the utility of these mechanical control concepts.

The 30-mm gun test data indicate that a useful degree of control of both the pressure-time
trace shape and the projectile muzzle velocity may be achieved by using either a stepped-wall
or a multichamber geometry, and that a useful degree of ballistic repeatability can often be
achieved, even in a nonoptimized test gun.

The 30-mm gun test data also indicate that the igniter needs to be tailored to the size and
geometry of the input stage of the main liquid propellent chamber to achieve near-optimal
ballistic repeatability.
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1. INTRODUCTION

The objectives of the Phase II Small Business Innovative Research (SBIR) Program reported here
involved examining the influence of the mechanical concept of chamber geometry as an approach
(in conjunction with a repeatable igniter) for controlling interior ballistic variability and the overall
shape of pressure-time (P-t) curves in medium-caliber (20 mm and 30 mm) bulk-loaded liquid

propellant guns (BLPG).

The performance variabilities observed in past BLPG investigations and an understanding of the
responsible processes up to the late 1980s has been admirably reviewed [1]. These variabilities have
included frequent overpressures and occasional gun system failures. The basic problem arises
because the combustion process within a BLPG depends on hydrodynamic instabilities developed
during liquid propellant (LP) ignition and combustion evolution, rather than on a predetermined solid

propellant grain geometry to define the burning surfaces.

The instabilities themselves may arise from a number of sources, including variations in igniter
output, initial ullage, shot-start pressure, fluid motion to form a combustion gas cavity within the
body of LP in the gun chamber in response to LP combustion and projectile motion, fluid turbulence
and breakup resulting from liquid motion relative to the chamber walls, and liquid surface breakup
arising from a velocity mismatch at the liquid-gas interface [2]. Typically, the characteristics of
these instabilities vary in response to the prior sequence of events, and small disturbances that arise
early in the BLPG combustion cycle can become amplified in absence of burn rate limiting

characteristics.

While significant attention has been given to techniques of developing and emphasizing the need
for repeatable ignition in BLPGs [3], features associated with combustion evolution, although

certainly recognized early [1, 2, 3], appear to have received somewhat less attention.

The concept of using different geometries in igniters and in the igniter region of BLPGs to help
couple the igniter output to the main LP charge was introduced as early as 1974 [4, 5]. The concept



of utilizing a stepped-wall geometry in the BLPG combustion chamber itself as a potential means
of exerting boundary control on combustion evolution during part of the interior ballistic cycle
originated during diagnostic-type BLPG investigations conducted at Veritay in 1990 [6, 7]. This
approach was further explored and tested during subsequent experimental investigations [8, 9, 10,

11].

An alternate multichamber concept for geometry control of combustion within the main
chambers of a BLPG was also investigated experimentally at Veritay [12, 13, 14]. One
multichamber concept explored at Veritay exhibited some similarities to the approach advanced by

Puckett [15], but did not utilize the open plenum configuration at either end of the chamber tubes.

In addition to the BLPG testing and analysis conducted at Veritay, the data generated during this
effort were used in independent, as well as cooperative, analyses by the U.S. Army Research

Laboratory (ARL) [3, 16, 17].

The achievement of control over the ignition and combustion processes of bulk-loaded LP in a
closed, vented chamber under high-pressure conditions is an important technological goal from the
standpoint of obtaining satisfactory uniformity in ballistic performance and overall safety in gun
operation. Further, these combustion control issues are important for successful, dual-use civilian
applications of the bulk-loaded LP propulsion technology base, including items such as explosively
driven airbag restraint apparatus; oil and gas-well stimulation via ballistically tailored, pulse-shaping
soil displacement; propellant-driven concrete anchors for the construction industry; mining and
tunneling applications; explosive bonding; welding and cladding of dissimilar metals; pulse-power
generators for high-power microwave sources; resonant charging of capacitors; and possible use in

fusion research.

Potential military applications include direct-fire bulk-loaded guns in medium-caliber and small-
arms sizes, and bulk-type ignition systems for large guns. The BLPG system is itself a particularly
attractive candidate for small- and medium-caliber weapons because the gun hardware can be simple.

It can likely be implemented for use over a range of muzzle velocities to achieve selected degrees




of controlled lethality because the use of a LP in such guns offers potential advantages in

vulnerability, logistics, and cost over comparable weapons that use solid propellants.

2. BACKGROUND OF BALLISTIC PROCESS CONTROL NEEDS

In the past, a typical BLPG system was frequently viewed as consisting of a near-bore diameter
cylindrical combustion chamber, an igniter at the breech end, and a projectile seated at the forward
end of the chamber just inside the barrel. This classical BLPG system arrangement has essentially
been adapted directly from a solid propellant gun configuration and, indeed, features the utmost in
mechanical simplicity. However, this layout offers few means in BLPG systems to control and
stabilize the ignition and combustion processes or the fluid dynamics and combustion instabilities

that often develop during combustion evolution.

The general nature of ignition and combustion of liquid gun propellants is briefly summarized
in the following paragraphs to indicate some of the problems encountered and to enable a better

understanding of the significance of some unique features of process control needs and concepts.

Generally, liquid or gel propellants may contain solid components, but all such propellants have
a liquid as the continuous phase. Since most of the combustion occurs in the droplet or vapor phase,
the igniter must vaporize a small amount of propellant and then heat the vapor to a temperature at

which exothermic reactions occur.

Several problems must be overcome or addressed to achieve successful initiation and combustion

of LP in a bulk-loaded configuration, including the following.

» Ignition and combustion gas cannot flow throughout the charge since the LP permeability is

essentially zero; instead, the gas is confined.

* Gas evolving from the igniter or from combustion of the LP can create both radial and axial

pressure waves and strong combustion interactions at liquid-gas interfaces.




« The ignition gas kernel must be sufficiently large and energetic to avoid being quenched by

expansion cooling caused by projectile motion.

+ The ignition-combustion burning surface is not well defined geometrically; rather it is
characterized initially by the growth and geometry of the bubble of ignition and combustion
gases or Taylor cavity [1, 2]. Once the projectile motion becomes significant, the gas cavity
is expected to push through the LP to the projectile base, and gas driven Helmholtz instabilities
are expected to appear on the LP at the liquid-gas interface [1, 2]. These instabilities may
grow and cause some of the liquid to break up and form droplets; thereby, enhancing the burn

surface area and the overall rate of LP combustion.

« Generally, combustion processes in an LP can be more repeatable if the process can be made
to occur in a manner that maintains both hydrodynamic and combustion symmetry with respect
to the boundaries of the containment vessel. Typically, such symmetry goals can often apply

to turbulent flow conditions also.

« The igniter output and early combustion must increase the chamber pressure to a level where
reaction Kinetics are rapid and self-sustaining, or a controlled progressive combustion occurs,

and the ullage is compressed to form a more rigid liquid charge, even with projectile motion.

« The amount of LP and the rate at which the LP is ignited is critical for control of peak pressure

in the chamber.

« Sufficiently large pockets of gas (air or LP vapor), referred to as ullage, can cause unwanted

local ignition by adiabatic compression heating during the early time-pressure rise.

+ Additional pockets, or localized regions of LP vapor caused by cavitation of LP during flow
past sharp comners in the chamber, can cause local, secondary ignition by adiabatic
compression heating of these regions if they are subjected to even moderately large pressure

pulses within the chamber.




 High-pressure pulses within a chamber can be generated by reflective enhancement of lower

pressure pulses from concave curved surfaces and sometimes from flat surfaces.

These various features indicate that the igniter must be tailored to the LP charge to some extent.
Both overignition or underignition can cause excessive pressures to occur in bulk-loaded LP
chambers. Pressure waves in the LP that impinge on liquid-gas-free surfaces may cause spallation
and droplet formation (with an increase in burn surface area) and cause increased overall combustion
rates and possible overpressures. Therefore, igniter and chamber designs should be configured to
minimize pressure wave effects, while providing the sustained output required to achieve positive

ignition without excessive time delay.

Since the initial gas cavity within the LP-filled main gun chamber is generated by the igniter,
overall combustion reproducibility depends to some extent on the inherent reproducibility of the
ignition system itself, the way this initial cavity develops, and the tendency for combustion within

this cavity to stabilize early during its development and growth within the chamber.

Early, the projectile remains nearly stationary as the igniter creates a burning gas bubble within
the liquid phase to achieve adequate pressure and gas volume to support initial projectile motion
while maintaining combustion. By the time the projectile velocity has become significant (i.e., about
200 nv/s), an appreciable fraction of the high-pressure portion of the ballistic cycle is over; only a few
percent of the propellant has burned, and the gas pressure tends to be somewhat unstable because
of the relatively large rate of change of volume and the low, compressive nature of the liquid. This
early portion of the ballistic cycle is typically characterized by the occurrence of a high-pressure

pulse and can be strongly influenced by the igniter.

Once the projectile has achieved significant velocity and displacement, the mode of combustion
appears to change into one dominated by burning of droplets stripped from the liquid layer next to
the chamber wall [2]. While all the mechanisms are not well understood, it is believed that this
mode may begin when the initial gas cavity penetrates the liquid to the projectile base as a result of

projectile motion. The rate of burn surface generation and global combustion appears to increase



for a period, corresponding to increases in the projectile velocity. The corresponding pressure then
decreases as the projectile continues to move down the barrel. Combustion during this period is
often well-behaved if the ignition and combustion progressivity are in a suitable range, but it can
present problems of developing high pressures unless some control over combustion progressivity
is exercised. The achievement of reproducible P-t behavior in this later portion of the ballistic cycle
may be much more difficult, yet this may not be critical since a sizeable portion of the pressure

influence on projectile velocity has occurred relatively early in the projectile travel down the barrel.
3. EXPERIMENTAL SETUP

3.1 20-mm Gun Test Fixture. Early firing tests in this program were conducted using the single-
shot 20-mm test gun fixture (Figure 1). This gun test fixture was developed under previous
programs [8, 9] and consisted of different components that could be assembled into the gun fixture
in a modular fashion; it was supported by a large, steel beam to control the gun recoil. A 20-mm
rifled Mann barrel with a heavy-wall steel chamber housing made up the main gun assembly, and
the separate modular parts were included during the setup of each test. The chamber was designed
with an oversized cavity to accommodate chamber inserts approximately 44.37 mm in diameter and
97.2 mm long that could be individually configured to achieve different interior chamber geometries.
Each chamber insert was held in place by a threaded breech assembly. Pressure transducers were
inserted into the heavy-wall chamber housing that included through-ports aligned with openings in
the chamber insert. The breech assembly consisted of a booster housing with a percussion primer
and a pyrotechnic igniter, firing pin, and appropriate o-ring seals. Ignition was achieved by remotely
activating an air solenoid attached to the firing pin assembly; this caused the firing pin to strike the
primer. This gun assembly was used throughout the 20-mm testing without any modifications.
Additional important parts associated with the use of this gun test fixture included a standard 20-mm

projectile, velocity measuring equipment (conducting breakstrips), and data acquisition devices.

3.1.1 Pyrotechnic Igniter. In the 20-mm firing tests, two different pyrotechnic igniter (booster)
designs, B17-600 and B17-006, (Figure 2) were used to ignite the LP. A third booster housing

design, B17-111, is also shown in Figure 2 for convenience, but was used only in 30-mm gun firing
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Figure 2. Pyrotechnic igniter (booster) housing designs.




tests. Use of this particular housing is discussed later (section 3.2.1). These igniter designs (booster
housings) were inserted into the breech assembly. Both of these booster housings were machined
with an interior cavity to accept pyrotechnic-igniter (booster) propellants. This interior cavity had
a relatively large diameter that was varied from 3.73 mm to 5.61 mm and transitioned into a smaller
orifice diameter of approximately 1.32 mm. The orifice allowed for the hot gases generated from
the burning propellant to build up to a relatively high-pressure level and then escape into the LP-
filled main chamber. Each of the booster housings was loaded with the booster propellant and then
sealed with a primer retainer and a CCI-400 primer. A pressure port was located perpendicular to
the main booster cavity, which lined up with a pressure transducer port with the aid of a locating pin.
Two Viton-rubber o-rings, fitted on two steps on the exterior of the booster housing, prevented gas

leakage and permitted accurate measurement of the booster pressure.

3.1.2 Chamber Inserts. Chamber inserts were utilized in the 20-mm work so that each test could
be loaded and fired on an individual basis. In the initial 20-mm tests, two plastic chamber designs
were used to investigate the ignition of the XM46. These are the H and I geometries in Figure 3 (the
remainder of the chamber inserts in Figure 3 were made of steel). Two plastic inserts (the same as
the one designated type B17-A in Figure 4), each with a straight cylindrical geometry, were also test
fired before the remainder of the steel insert geometries shown in Figure 3 and in Figure 4 (including
type B17-A) were tested.

The interiors of the steel chamber inserts used in these later 20-mm firings were initially single,
open cylinders with constant diameters. From these given first-stage single diameters, steps to
successively larger diameter cylindrical sections were added to produce each stepped-wall design.
To investigate the effects on the combustion evolution and duration, different numbers of steps with
different diameters were used in the bulk-loaded LP tests. The steel chambers used in this testing

are shown in Figures 3 and 4.

3.1.3 20-mm Projectiles. The projectiles used in this effort were standard M55A2TP 20-mm
projectiles (Figure 5). These were used without modifications since interferometer velocity

measurements were not made. In the projectile mass scale testing, the M5S5A2TP projectiles were
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modified by removing the section in front of the rotating band and replacing it with a length of steel
rod welded to the projectile base. The length of these rods was dependent on the projectile mass
desired and varied from 10.16 mm to 138.13 mm to achieve projectile masses from 67 gto 376 g

(Figure 5).

3.1.4 Pressure Transducer Locations. Seven pressure transducers were used during the testing
of the 20-mm bulk-loaded LP test gun. The distances of all of the transducers from the breech face
of the 20-mm gun along with the distances from each other are given in Figure 1. One transducer
was located in the breech assembly, three were located in the chamber section, and three were
located in the barrel. The transducer located in the breech (BOS) was used to measure the pressure
generated within the booster housing. The three chamber pressure transducers (CH1, CH2, and
CH3) were located in line to record the pressures generated in the chamber during the test. These
pressures in the main chamber were obtained through long ports 2.26 mm in diameter that led to the
main chamber cavity. The barrel transducers (BA1, BA2, and MUZ) were recess-mounted and were
important in determining the pressures that originated in the barrel and created delayed pressures in
the chamber. The muzzle pressure was important to determine the amount of muzzle blast from the

combustion event.

3.2 30-mm Gun Test Fixture.

3.2.1 Pyrotechnic Igniter. The booster housing used in the 30-mm firings of this effort was
configured to accommodate different pyrotechnic igniter propellants and could be easily modified
to test different booster housing interior volumes. The propellants used as the booster were
contained within a cavity that consisted of a large cylindrical section, together with a smaller
cylindrical section toward the chamber. A schematic of the booster housing B17-111 used is shown
in Figure 2. For a series of tests, the larger section diameter was changed while the smaller region
remained constant. A through-hole penetrated the smaller region at a 90° angle and was lined up
with a pressure port by the use of a guide pin during insertion of the booster housing into the test gun
fixture. A plug with an orifice diameter from 1.4 mm to 1.7 mm was pressed into the front end of

the booster housing, and this orifice allowed the booster gases to exit into the chamber cavity. Since
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the orifice diameter could become larger through erosion by high-temperature, high-velocity gases

during the tests, the orifice plug was removed and replaced before every bulk-loaded LP test.

To permit alterations to be made to the interior of the booster housing, a removable primer
retainer was included in the design. The diameter of the housing interior was varied simply by
removing the primer retainer and drilling the housing to a larger diameter, or by pressing a sleeve

into the housing to decrease the diameter.

3.2.2 Chamber Inserts. Some, but not all, of the insert chambers used directly in the 30-mm gun
fixture testing were stepped-wall cylindrical-type combustion chambers (Figure 6). In general, the
chamber designation, such as “AAA GEOMETRY,” is used in this report mainly to indicate the
interior geometry of each chamber. The materials from which each tested chamber was constructed
(such as plastic, steel, or percentages of each of these materials) are indicated explicitly as part of

the initial parameters for test firing data summarized in the Appendix.

In each case for the insert chambers shown in Figure 6, the interior geometry was formed by a
sequence of cylindrical sections joined end-to-end and located along a common axis. By properly
configuring the diameter and length of each section of the chamber-wall geometry, the postulated
progressivity and stability of combustion within the chamber was controlled more effectively. The
magnitude, and to some extent, the shape, of the P-t combustion behavior within such a step chamber
could be adjusted by changing the chamber geometry to achieve low-, medium-, or high-muzzle

velocity ballistic performances.

3.2.2.1 Original Stepped-Wall Geometries. As a result of previous 20-mm stepped-wall
chamber test work [7, 8, 9], the early firing tests conducted here used a single-shot 30-mm test gun
fixture fitted with different individual types of chamber inserts of plastic, steel, or a combination of
both. These 30-mm chamber inserts were surrounded by a heat-treated 17-4 PH steel insert sleeve’
that provided added strength and reduced the overall compressibility of the chamber inserts used in
the tests. These chamber inserts included the following.

*This steel insert sleeve component is illustrated in Figure 16.

14




122.02mm
f1.52mm
81.01mm
‘30.51mm"’1
‘ r__.l"‘——‘_“—_I
_—T ]
45.05mm
e
e
ot
11.50mm 16.00mm 20.00mm 24.00mm 30.00mm
AAA QEOMETRY
91.62mm
81.01mm
-30.5tmm—~|
T
i
45.05mm
—
L
1
18.00mm 20.00mm 24.00mm 30.00mm
AAB GEOMETRY
f1.52mm
¢1.01mm
~-30.51mm |
45.05mm 30.00mm
| |
—= *-3.17mm
18.00mm 20.00mm 24.00mm 28.00mm
AAB-1 GEOMETRY
$1.52mm
€1.0tmm
- 30.51mm
45.05mm 33.02mm
—
1
}
—-l = 3.47mm
16.00mm 20.00mm 24.00mm 30.00mm

AAB-2 GEOMETRY

81.0imm
-30.51mm =

je—mm——182.55mm TYPICAL ALL CHAMBERS —

45.05mm

20.00mm 24.00mm 30.00mm

AAC QEOMETRY

je—=4§.786mm >
*-30.5imm ]

45.05mm

45.05mm

20.00mm 24.00mm 30.00mm

AAD QEOMETRY

f——45.78mm—
l-30,51mm~

33.02mm

20.00mm 24.00mm 30.00mm

AAD-1 GEOMETRY

l‘so.samm-’

3.17mm = e

45.0

Smm

]

20.00mm 30.00mm

AAE GEOMETRY

Figure 6. 30-mm plastic chamber insert geometries.
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« The individual acrylic-plastic chamber inserts with the interior geometries corresponding to

those indicated in Figure 6.

« The combinations of separate rear-plastic and front-steel insert sections of different lengths (to

vary the proportion of steel used) (shown in Figure 7).

« The combination of a long, front, stepped-wall steel insert and three candidate, short, rear,
first- stage insert sections with different amounts of plastic and steel (to be used individually

with the long insert to further increase the proportion of steel used at the initiator end of the

chamber) (shown in Figure 8).

Later, the 30-mm test gun fixture was modified to enable the pressure transducers to be
positioned closer to the combustion event in the insert cavity and thereby shorten the length between
the cavity and face of each pressure transducer. This modification enabled a flush-mounted pressure
transducer to be introduced with zero setback in addition to the standard mount (recessed mount)
with a 2.29 mm (0.090 in) setback; this was partially to improve the frequency response of the
pressure measurements. It further reduced spurious pressure pulses, which may have originated as

a result of the coupling between the transducer and the combustion event.

This modification also resuited in the elimination of the surrounding steel insert sleeve noted
previously. Instead, a one-piece, heat-treated 17-4 PH steel insert chamber with a larger outside
diameter, improved high-pressure seals on each end, and a partially fixed, stepped-wall geometry
arrangement was used.” This steel insert chamber (Figure 9) also included a short, first-stage insert
section of plastic and steel at the initiator end of the long steel chamber. Three first-stage insert
sections tested are also shown in Figure 9. Their use permitted further examination of the suspected
tendency of plastic in this initiation region to help reduce the magnitude of pressure oscillations or

pulses that have sometimes been observed as part of the overall P-t traces generated in BLPG tests.

“This modified steel insert sleeve component is illustrated in Figure 17.
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3.2.2.2 Modified Stepped-Wall Geometries. The design of the 30-mm stepped-wall chamber
inserts were changed slightly after test 115 to accept the 30-mm projectiles shown in Figure 5 with
modified bases of either steel or Delrin to serve as hemispherical wave deflectors or wave absorbers.
The Delrin was larger than the chamber diameter, so there was approximately a 0.05-mm pressed
fit when the projectile was seated in the front of the chamber insert. This created a strong seal that

allowed the LP to be poured into the rear end of the chamber without seepage.

The first stage of each of these modified stepped-wall insert chambers was 16-mm inside
diameter, when fitted with a Delrin insert sleeve with wall thickness of 1.27 mm (0.050 in).

A perspective, cut-away view of a 30-mm steel stepped-wall chamber insert together with a
modified GAU-8 30-mm inert projectile is shown in Figure 10. Schematics of the modified chamber

inserts used in the modified 30-mm gun test fixture are shown in Figure 11.

3.2.2.3 Multichamber. The second type of 30-mm plastic chamber insert investigated was the
multichamber configuration (Figure 12). The principal geometry of the multichamber inserts
consisted of a single, cylindrical first- stage section followed by a second section containing 1,3, 4,
or 6 cylindrical tubes, and a third section containing 3, 4, 6, 9, or 19 cylindrical tubes. An important
part of this design, derived through experience and testing, is the transition region from the last-stage

tubes to the bore diameter.

In the first multichamber test, it was observed that the pressures in the chambers increased
significantly following initial ignition and early pressure development. This significant pressure
increase was attributed to more vigorous combustion in the turbulent region just downstream from
the termination of the tubes. This turbulence was likely caused by LP flow past the abrupt steps at
the ends of the holes formed by the cross-sectional area of material between the tubes themselves.
This turbulent region downstream from this central core region was essentially eliminated by
tapering the front ends of the tubes with respect to the central axis of the chamber to eliminate the

large, central step changes. In addition, a transition ring was added at the front of this region where
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the tubes joined, since the outer diameters of the tubes were larger than the gun-bore diameter. This
ring formed a single, chamber-chambrage region that directed excess LP and combustion gas into
the barrel without causing further turbulence from sharp comers. A three-dimensional, cross-
sectional view of the multichamber with a modified GAU-8 30-mm inert projectile is presented in

Figure 12.

The multichamber configurations in the proceeding sections were designated by the number of
chamber tubes present in each of the chamber sections, as noted in Figure 13. Thus, a multichamber,
designated 1-3-3, consisted of a single-cylinder input section, a three-chamber (or tube) transition
region, and a three-tube third section. Correspondingly, the designation 1-1-19 refers to a single-
cylinder input section, a single, large-diameter, plenum transition section, and a 19-tube
multichamber region (Figure 14). Since the cross-sectional area of each section of the stepped-wall
chamber inserts has been identified as an important feature of the chamber performance, an
equivalent single diameter in millimeters of the combined cross-sectional area of tubes in each region
may be identified. For instance, some of the multichamber configurations used had equivalent

chamber diameters of 20 mm, 24 mm, and 29 mm.

3.2.2.4 Multichamber Drilling Jig. To fabricate the multichamber configurations, and especially
the tapered front section of the chambers, drilling jigs were machined and utilized to increase the
efficiency and accuracy of the fabrication and, hence, the testing. The straight tubes in the front
section of the chamber insert were located and drilled first, then a pin (alignment insert) in the
drilling jig (Figure 15) was used to locate the holes and drill the angled holes that intersected the
straight tubes. This jig was used with minor modifications for the 1-3-3, 1-4-4, 1-6-6, and 1-3-9
configurations. To create the tapered section between the straight holes, 2 45° angle was machined
at the front end starting at the outer edge and cutting into the chamber. The drilling jig was used
again to hold the insert at an angle, and a drill was used to remove material from between the straight
holes. The tapering in the transition ring holding in the projectile was accomplished by using a

simple drilling jig and an angled drill mount.
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3.2.3 30-mm Projectiles. The original projectile used was a GAU-8 30-mm projectile whose
wind screen was removed from the nose before firing. This exposed the flat nose of the projectile
body and enhanced the reflection of signals from the 15-GHz microwave interferometer. It was
further modified with steel and/or Delrin at different times during the testing to aid in the loading
procedure or to investigate the effects of the changes. Following test 115, the rear end of the GAU-8
projectile was machined to accept various steel or Delrin modifications. These modifications were
either in the form of a hemisphere or a flat surface on the rear of the projectile. Schematics of the

projectile modifications used in all of the 30-mm tests are shown in Figure 5.

3.2.4 Gun Test Fixture. The gun test fixture used in the 30-mm phase of testing consisted of a
rifled Mann barrel screwed into a steel chamber and attached to a rigid steel beam. The chamber
attachment was designed to accept various chamber lengths. In this testing, the chamber insert was
approximately 153 mm long and 45 mm in diameter and could hold various amounts of LP
depending on the interior geometry of the chamber insert. The chamber insert was placed into the
chamber and secured by a breech assembly screwed into the rear end of the chamber. The booster
housing was inserted and secured into the breech assembly by the firing pin, and a high-pressure
transducer was inserted near the booster through a long channel to measure the pressures generated
by the booster. The original gun assembly used in this effort is shown in Figure 16 with a partial

barrel to indicate the details of the chamber assembly.

After about 55 tests with the original 30-mm gun test fixture, modifications were made that
reduced spurious test results associated with the pressure ports and the modular form of the fixture.
This modified gun test fixture is shown in Figure 17 and explained in more detail. Clearance holes
were drilled into the chamber to allow insertion of the high-pressure transducers directly into the
chamber insert through the main chamber. Also, grooves were machined in both the barrel- and
breech-end faces to accept o-rings upon assembly of the chamber insert. A Veritay-owned Mann
barrel was machined and used in the interim because the original low-strength barrel had expanded.
Although this gun design could also be used for tests without the o-rings, grooves were cut into both
chamber faces and aligned with the breech and barrel grooves. When the gun test fixture was
assembled, the o-rings filled 90% of the void created from the grooves and acted as high-pressure

seals to contain LP and LP combustion gas during test firings.
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3.2.5 Transducer Locations. Nine transducers were used during tests 57-115 of the original 30-
mm BLPG (Figure 16). One was located in the breech assembly, three in the chamber, two at the
base of the projectile, and three in the barrel. Three-letter acronyms were used to distinguish each
transducer location and data received from the transducer ports. The transducer located in the breech
(BOS) was used to measure the pressure generated from the booster housing, and the three-chamber
recessed transducers (CH1, CH2, and CH3) were located in line to record the pressures generated
in the chamber during the test. Three transducers were used for easier identification of the origin of
pressure pulses within the chamber. The two transducers at the base of the projectile (CH4 and
CHS) were added after test 102 to investigate pressure pulses occurring as the projectile began to
move. The barrel transducers (BA1, BA2, and MUZ) were important in determining the pressures
that originated in the barrel and in determining the amount of muzzle blast from the combustion
event. The distances of the chamber and barrel transducers from the face of the breech are shown

in Figure 16.

The modified 30-mm gun test fixture (Figure 17) utilized eight transducers during testing. As
with the original gun, a booster transducer was located in the breech assembly (BOS) and three were
in the barrel (BA1, BA2, and MUZ). Note that two transducers in the chamber were standard-
mounted and one was flush-mounted in the modified gun. The transducers were placed directly in
the chamber insert instead of utilizing a long pressure port leading to the chamber transducers, as in
the original gun fixture. The standard-mount transducers (SC1 and SC2) were in line and in the
same axial positions as the CH1 and CH2 transducers in the original gun, and the CH3 transducer
was blocked off in this test fixture. The flush-mount transducer (FC2) was in the same axial location
as the SC2 transducer, but was rotated 270° about the chamber axis. The transducer in the CHS
position in the original gun was used in the modified design, but CH4 was not used because of its

tendency to sense water-hammer-type pressure effects using a standard-mount transducer.

3.3 Booster Propellant. Early in this effort, a combination of different booster propellants,
including Hercules Unique, HC25, and HC33, was examined to select a candidate(s) to be used in
the booster housing configuration of the 30-mm gun test fixture. Small-scale booster-only tests

(section 4.1.1.2) were completed with Hercules Unique, HC25, and HC33 booster propellants in a
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previous effort [18]. These HC propellants were deterred from 0 to 4% with Herkote to change the
burn rate of the booster. The propellants used in the test are shown in Table 1. From the booster
tests, only the HC33-BS664 propellant was chosen as a candidate for the full gun tests. The
Hercules Unique canister powder was used for 158 out of the 163 full-scale tests. The properties of

the canister powder Unique are given in Table 2.

Table 1. Type of Propellant and Amount of Herkote Deterrent in Each

HC33-BS664 0

HC25-BS661 2.07
HC25-BS662 2.57
HC25-BS663 3.95

Table 2. Partial Table of Physical and Chemical Data of Hercules Unique Canister Powder [19]

H Property ) ) Uniqueg_J
Impetus (J/g) 1099
Heat explosion at 25° C (cal/g) 1088
Tv (K) 3379
Moles of Gas per Gram (mol/g) 0.0391
_Specific Heat at Constant Volume (calig °C) | ___0.3417

3.4 Temperature Control. A temperature-control system was employed throughout testing to
maintain the LP and gun fixture at an ambient temperature (23° C). This temperature control was
needed to ensure that the LP stored in unheated, outside magazines and the gun fixture in the test
range were both brought to a reproducible temperature for tests. The system was composed of two
immersion-type heaters; one heater was used to control the temperature of the gun fixture and the

other to control the temperature of the LP. The gun fixture heater was immersed in a ethylene
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glycol/water bath and plumbed via 9.52-mm (%s in) rubber hose to the fixture where it coupled to
9.52-mm (¥s in) flexible copper tubing tightly coiled around the diameter of the gun chamber. The

coil and fixture were insulated with a clear, plastic wrap.

The LP conditioning system consisted of a similar heater/water bath/tubing configuration as that
for the gun. This section, however, terminated at a 20.3-cm (8 in) high by 15.4-cm (6 in) diameter
thin-walled steel can with a removable lid. The copper tubing was coiled near the inside wall of the
can. The can was insulated on the exterior by a layer of foam rubber. The LP to be conditioned was
poured into a glass or polyethylene container and placed inside the conditioning can until the desired

temperature was reached.

3.5 Liquid Propellant. The LP used in this effort was XM46 liquid monopropellant with a

density of 1.43 g/cm®. Before each test firing, the LP was conditioned in the temperature-control
system and the temperature was measured with a thermometer. All pretest temperatures were

between 23 and 25° C.

3.6 Testing Procedures. Because of the hazardous nature of the XM46, it was very important
in this testing that the LP was loaded in a consistent and safe manner. Standard operating procedures
containing safety and procedural information were written, approved by the cognizant Defense

Logistics Agency (DLA) explosives safety inspector, and followed throughout testing.

3.6.1 Safety. Testing with the BLPG was potentially hazardous if the LP was not handled
properly. A standard operating procedure (SOP) was prepared and used during the LP work to
establish a safe operating procedure and assign responsibilities for the loading and firing of
percussion-primed, medium-caliber LP test weapons with projectile diameters between
approximately 15 mm and 40 mm. This SOP describes the scope, applicability, responsibility,
personnel limits, hazardous material limits, general safety requirements, and personal-protective
equipment requirements for these medium-caliber LP test guns. The sequence of operations to safely
load and fire the 20-mm and 30-mm LP guns was provided to the testing personnel by means of a

checklist. This checklist was revised in an iterative fashion as the hardware was modified or
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changed so that the sequence followed was the safest and most efficient possible. Also, a misfire
procedure was contained in the SOP and was supplied in the testing room to aid in tests that did not

fire.

3.6.2 Loading. The loading procedure for the 20-mm work and in early 30-mm work utilized
tape and silicone grease to seal the chamber insert without allowing for propellant seepage. Packing
tape was placed over the forward end of the chamber insert, and silicone grease was used to fill the
2.3-mm transducer ports to create a nonleaking cavity in the chamber. A piece of clear tape was used
to cover the LP after it was poured into the chamber, and a syringe was used to fill the chamber to

the top. Additional silicone grease covered the hole created from the syringe.

Following the loading procedure, the projectile was inserted into the gun and was followed by
the LP-filled chamber insert. With the chamber insert in place and the pressure ports lined up, the
breech assembly (consisting of the breech, booster housing, and firing pin) was screwed into place
and tightened. The breech utilized a steel and Viton o-ring at the base of the breech, which when

tightened, created a seal between the breech and the rear face of the chamber.

After test 115, the procedure for loading the LP into the chamber insert was varied slightly to
reduce possible spurious results associated with the original loading procedure. The Delrin
modification on the rear of the 30-mm projectile was pressed into the forward end of the chamber
insert after tape was placed over the inside of the insert holes created for the pressure transducers.
The transducer side of each taped insert hole was coated with a thin layer of silicone grease before
insertion of each pressure transducer. The possibility exists that a very small amount of air was
trapped in each hole upon insertion of a transducer. The LP was then poured into the cavity formed
from the projectile and chamber. Once the propellant filled the cavity nearly to the top, a piece of
clear cellophane tape was placed over the hole to seal the chamber. A syringe was used to inject LP
into the chamber and fill it to the top; a second piece of tape sealed the pinhole made by the syringe.
The breech end of the chamber was machined with a 0.015-mm deep step in order to account for the
thickness of the two pieces of tape. When the tape was cut around this step, the tape and the end of
the chamber were flush with each other. The use of two pieces of tape instead of one piece of tape
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and a coating of silicone grease, as in previous work, seemed to lower the variation of the igniter

caused by the silicone grease, altering the generation of booster gas.

The order in which the booster housing and firing pin were assembled into the breech was
changed in the later 30-mm work from that used in the 20-mm and the early 30-mm work.
Previously, the firing pin, booster housing, and booster transducer were assembled into the breech
before the breech was screwed into the main chamber. Because the o-ring between the breech and
the chamber insert in the modified design could trap air on assembly, the breech was screwed into
the main chamber before the booster and firing pin were assembled. This may have reduced the

variation arising from the setup.

3.7 Data Acquisition. Data sheets and pressure data were produced for each test. Inmitial

hardware parameters, velocity data, and pertinent pressure and time information were contained on

the data sheets.

3.7.1 Initial Parameters. Important booster or chamber parameters were measured and/or
calculated before each bulk-loaded LP test. The temperature and mass of the XM46 propellant and
the mass of the projectile were measured. The dimensions measured in the booster housing were the
length (/) and diameter (D) of the main volume of the cavity. From these measurements and the

booster mass (m), the booster load density could be calculated by the following equation:

4 m (1)

Pioad

All of the measured and calculated initial parameters are included in the database in the Appendix.
Because many modifications were performed on the chamber inserts, the interior diameters and

lengths of each stage section were measured and compared to the design drawing before each test.

3.7.2 Pressure Data. Data for the bulk-loaded LP tests were acquired with a LeCroy data

acquisition system. Up to ten channels were used for pressure measurements with data being
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acquired at a rate of 1 point every 2 ps. Originally, data was taken every 5 ps with a small window.
Later the window was increased to 64 ms, and the time per point was decreased to 2 ps. Time zero
was considered to be the time at which the firing pin impacted the primer, and 64 ms of data was
acquired after that point. Normally, the entire combustion event occurred within 4 ms, but if there
was a long ignition delay, it was possible for the event to occur after 4 ms. The 64-ms data

acquisition window was used for all tests in attempt to make certain that the data were recorded for

each test.

The pressures obtained as a function of time during each LP test varied slightly depending on the
design of the gun and the pressures desired. For all tests, the booster pressure (BOS) and three barrel
pressures were obtained. At least three chamber pressures were obtained from the tests using the
20-mm, 30-mm, and modified 30-mm guns, but the three transducers were in different axial and

radial positions depending on the design.

Important points on each of the pressure curves were recorded on the data sheets for later
comparisons. Normally, the maximum pressure in each curve was acquired along with the time that
it occurred. Since the pressure in the first-stage chamber section was identified as important in the
ignition and combustion of the LP, two more characteristics were obtained from the CH]1 pressure
trace. Time for the pressure to reach 70 MPa was obtained and was known as the ignition delay.
The pressure rise rate P-dot was established as the pressure change per unit time from 70 MPa to the

maximum in the CHI curve. An example of these values is shown in Figure 18.

3.7.3 Velocity Data. Velocity data was obtained by measuring the time required for the
projectile to penetrate paper breakstrips positioned known distances apart. Three separate times were
obtained: from the first to second breakstrip, V,,; from the second to third breakstrip, V, 5; and from
the first to the third break strip, V, ;. Three separate velocities were obtained so that if the projectile
did not pass through one of the breakstrips, at least one velocity could be recorded. The average

velocity (V) of the projectile was included in the database for each test.

36




0¢

"S9081) 1-q | JoqUuet]d WOIJ Ua)e] UOIJBULIOJUT JO ojduiexy ‘| oIndn]

Sl

(sur) oung,

or ¢o 00

T T 9 7| O

T 001

_ Aepo(g uonugi _

T 051

1 002
/)

(swyed ) 10p d |

7

-

<

v

o
(edIN) 2Imssa1g

t
o)
S
o

!
o
Ug}
o

T 00V

T 0S¥y

_ (edJA) 2InSSaIJ WINWIXEIA]

00§

37



3.7.4 Interferometer. A microwave interferometer was positioned on a rigid steel shelf
approximately 91.4 cm alongside the gun fixture and 122 cm behind the muzzle. The high-frequency
beam was aimed at an aluminum piepan reflector, which was located about 68.6 cm beyond the
muzzle. Interferometer orientation was adjusted using a field-strength meter (FSM) so that the
maximum signal strength occurred at the point where the beam converged with the projectile path
and the reflector. The reflector was mounted on an adjustable steel support that required
reorientation before each test, due to the effect of the muzzle blast on the support. To make certain
the beam was traveling down the barrel and striking the projectile squarely, the signal strength at the

initial projectile position was maximized using the FSM.

The response of the interferometer as a result of the projectile movement was recorded on the
LeCroy system at an acquisition rate of 1 point every 2 ps. From this curve, the time at which the
sinusoidal curve began was acquired along with the time at each peak (or every-other peak) along
the curve. The wave displacements are different for waves traveling through a known gun bore
diameter and through air. Therefore, the peak time values along the interferometer curve were not
used when the curve became unstable, or at the time beyond when the peak of the return signal
corresponded to arrival of the projectile at the muzzle. The instantaneous velocity of the projectile
moving in the barrel is found from each complete wavelength and the measured time corresponding
to a single wavelength. The interferometer was measured as having an initial frequency of

14.987 GHz; the displacement was 1.086438 cm for each complete wavelength.

For a given interferometer frequency, barrel diameter, and projectile starting and ending time,
the time between each peak of the sinusoidal interferometer output was obtained with custom written
software. From this waveform data, the displacement was obtained as a function of time. When
waveforms were clipped, however, the software manipulation was less effective, and the wave forms

were solved manually.

After test 115, the displacement vs. time data obtained from the raw interferometer tests were
incorporated into spreadsheet software and converted into initial-acceleration, initial-velocity, and

muzzle-velocity data. This was accomplished by fitting a section of the data with a polynomial
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equation at a specific displacement, solving the derivative or second derivative of the equation, and
obtaining the inverse of the solved equation to obtain velocities in m/s and accelerations in m/s’.
The initial accelerations and velocities for each test were calculated at 1 cm, and the muzzle velocity
was calculated at 2.056 m of displacement (the length from the initial projectile placement to the
muzzle transducer). Although many of these muzzle velocities were within 1 or 2%, some differed

up to 6% from the velocities obtained by the breakstrip technique.

3.8 Inverse Interior Ballistic Code. In this effort, work was done briefly using an inverse,

interior ballistic code in conjunction with the bulk LP testing. This code would have aided in the
understanding of the pressure development in the gun system from specific parametric changes.
Although time was spent including and varying physical parameters from an existing interior ballistic
code developed at Veritay, this effort did not address in detail enough physical phenomena to

accurately and reliably predict the test results.

Since the inverse, interior ballistic code was not developed past this stage, other software was
written to increase the productivity and efficiency of the testing. Data reduction software converted
and graphed selected pressure data to be used in reports and data analysis. Also, data for the
displacement of the projectile with time were extracted from interferometer waveforms through

software manipulation. All of the data were supplied to ARL on disk and on hardcopy.

3.9 Database. A database of many measured and calculated values associated with LP gun firing
tests is included in the Appendix. These values were compiled so that a coupling between the
starting parameters and the test responses could be made easily and efficiently. Many of the values

listed in the database have not been analyzed, but are included for future analysis.

4. TEST FIRING RESULTS

4.1 Stepped-Wall Chamber Configuration.

4.1.1 Ignition of XM46. The ignition of XM46 was investigated in the 20-mm test firings and
in later 30-mm tests by varying different parameters within the pyrotechnic igniter. Two booster
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housings with different designs and internal volumes were used in the 20-mm test firings without
varying the volume of either of the housings. These housings were filled with different amounts of
Hercules Unique canister powder or the orifice diameter was increased or decreased to investigate
the effect on the test results. In the 30-mm gun firings, the booster load density (booster
mass/booster housing volume) was used as a guide for the performance of the booster. The booster
load density was varied in some of the tests by changing the booster mass, the volume of the booster
housing cavity, or both at the same time. The effects of the different load densities (because of

changes in mass and/or volume) on the ignition of XM46 is discussed later.

4.1.1.1 20-mm Gun Tests. In early ignition tests utilizing the H- and I-type chamber geometries

and different projectile masses, the booster mass and the orifice diameter of the booster were varied.

The effects of a changing booster mass on the booster performance and, therefore, the chamber
pressures, were investigated by decreasing the amount of the booster in the pyrotechnic igniter. In
this 20-mm testing, the dimensions of the booster housing (Figure 2, B17-006) and the chamber
(Figure 3, geometry A) remained constant. The booster load was decreased from 335 mg in test 40,
to 300 mg in 41, to 240 mg in test 44, in a cavity volume of 0.574 cm’. The booster densities for the
three tests were 0.584 g/cm?, 0.523 g/cm’, and 0.418 g/cmy’, respectively. Decreasing the booster
load densities generally decreased both the rise rate and peak pressures of the booster response
(Figure 19). For the same combustion-chamber diameter, decreasing the booster loads appeared to
cause larger initial pressure pulses as well as an increased duration of ignition pressure. The low-
amplitude pressure pulses in test 40, as compared to tests 41 and 44, are probably the direct result

of using a plastic chamber insert in test 40, vs. a steel chamber insert in tests 41 and 44.

The orifice diameter of the booster housing for the 20-mm tests was varied in an attempt to
optimize the igniter’s performance. Although the effects of changes in orifice diameter were not
well-understood, the testing showed that the orifice diameter was also an important parameter to
consider when attempting to ignite XM46. Since liquid combustion occurs in the vapor phase, the
igniter must vaporize a small amount of LP and heat the vapor to a temperature at which exothermic
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reactions occur. Since the booster orifice diameter controls the mass flow rate out of the booster

cavity, the rate in which the LP is vaporized and heated is directly related to the diameter of the

orifice.

To begin testing in the 30-mm gun, a booster load was estimated from the 20-mm test results.
A simple ratio method was used that related the booster mass per LP volume in good 20-mm tests
to the booster mass and LP volume to be used in 30-mm tests. Along with this, the booster load
density was kept between 0.4 g/cm® and 0.5 g/cm’, the same booster load density range found to
produce good results in the 20-mm firings. In the initial tests in the 30-mm gun, this ratio method
produced a good estimation for obtaining adequate and safe chamber pressures to start the 30-mm

tests.

4.1.1.2 30-mm Gun Tests (Tests 70-108). In tests 70-108, the booster parameters were varied
in the process of reducing the amount of plastic in the first stage of the chamber insert. The diameter
of the main section of the booster housing (Figure 2, B17-111) or the mass of propellant within the
cavity was increased or decreased to obtain desirable booster load densities. From these tests, the
booster housing parameters, important in the ignition and ultimately the combustion of the XM46,
were investigated. Also, the type of the booster propellant used in the gun test fixture was

investigated.

In tests 87—89, the mass of the booster and the volume of the booster housing were reduced
simultaneously. Although these parameters were reduced, the booster load densities actually
increased. Test 87 did not ignite adequately, and combustion did not occur in the chamber
(Figure 20). In test 88, combustion occurred, but a long and uneven ignition delay suggested that
the combustion was not stable. The largest load density and smallest mass of the three tests had the
most favorable results. In this case, the ignition delay in the chamber pressure was slightly shorter
and the pressure rise was consistent. The peak pressures in this test were approximately 400 MPa,

which were considered to be at a favorable level.
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Figure 20.
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The booster propellant used in all but five of the 30-mm gun test firings was Hercules Unique.
The five tests, numbers 70-74 inclusive, which did not use the Unique, used Hercules HC33-BS664

gun propellant.

Prior to testing an alternate booster propellant in the full-up 30-mm gun test fixture, the
performance of different solid propellants, examined under a previous effort [18], was examined and
compared to the Hercules Unique booster propellant used throughout most of the 20-mm and 30-mm
test firings. Hercules gun propellant type HC33-BS664 was chosen to be tested in the full-up gun
fixture. The HC33-BS664 propellant was chosen primarily because of its slower burn rate. The

slower burn rate booster propellant was expected to reduce the pressure noise spikes found in the gun

chamber during the early stages of ignition.

In tests 70-74 inclusive, Hercules HC33-BS664 gun propellant was used as the booster
propellant. To obtain nearly the same peak pressure in the booster cavity that was obtained during
tests that used Hercules Unique, a greater mass of HC33-BS664 propellant was needed. Figure 21
shows the P-t traces for 0.420 g of Hercules Unique and 0.894 g of Hercules HC33-BS664 when
fired in a booster chamber with a 1.32-mm diameter exit orifice. Both propellant loads were initiated
by a CCI-400 small-rifle primer. Since the peak pressure obtained when using the HC33-BS664
propellant in the booster-only test was slightly higher than the booster test that used Unique, a lower
(0.751 g) amount was used in the first gun test firing (test 70), which used HC33-BS664 booster

propellant.

Furthering the investigation involving HC33-BS664 booster propellant, the type AAB-1 plastic
chamber insert (Figure 6) using a 16-mm first-stage diameter, a 20-mm second-stage diameter, a
24-mm third-stage diameter, and a 30-mm fourth-stage diameter was used in tests 72 and 74. The
amount of HC33-BS664 propellant used in test 74 was 891 mg, while in test 72, 905 mg were used.
The peak pressures and ignition delays in the main chamber P-t traces decreased (Figure 22) as the
booster load increased. When Unique was used (Figure 22, test 75), the ignition delay was short and

combustion control appeared better.
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Figure 22. Effects of increasing the HC33 booster mass and a comparison to a Unique booster test.
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A key observation from these tests using the HC33-BS664 propellant as the booster was that a
long ignition delay is evident in all the tests. If the delay is long enough, as in test 74, the
combustion control suffers. As a result, efforts to use the HC33-BS664 propellant as a booster load
were not pursued further under this program; rather subsequent testing was conducted using Unique

as the primary type of booster propellant load.

4.1.2 Projectile Mass Scaling. To explore the effects of different projectile masses on the
ignition and combustion of XM46, a group of projectiles with increasing masses were designed,
fabricated, and tested in the 20-mm bulk- Joaded gun. These tests were safely fired in a series (tests
27, 18, 28, 36, and 38) in which the projectile masses were changed incrementally over the range
from 67 to 376 g. The fronts of the M55A2TP projectiles were extended with solid steel rods to
obtain the desired masses (Figure 5). Figure 23 shows the effect on the P-t traces using projectiles
of different masses, while keeping the remaining test parameters essentially constant. It is interesting
to note from this figure that although the projectile mass was varied by a factor of 5.6, the peak
chamber pressure did not increase significantly, but actually created a more flat-topped curve with
the heavier projectiles. The displacements of the projectiles determined from measurements made
with a 15-GHz interferometer (Figure 23) are consistent with the postulated acceleration and
velocity-dependent combustion mechanisms discussed earlier; the larger masses accelerate more
slowly and produce lower final velocities. The heaviest of the 20-mm projectiles was approximately
the same mass as the standard 30-mm projectile (379 g). This fact was encouraging because it

suggested that the 30-mm projectile could be used with a similar type of chamber.

4.1.3 Control With Scaling. After a series of ignition and mass scaling tests was completed in
plastic chambers, steel chambers were tested in the 20-mm gun fixture. The initial design was a
straight tube of constant diameter that created secondary pressure spikes within the chamber (Figure
24). This straight tube could hold only 7.6 g of LP and the projectile velocities were low. This
secondary pressure was thought to be a result of incomplete burning of LP in the chamber and, as
a result, some unburned LP was pushed forward out of the chamber and was ultimately ignited and
burned in the barrel. By adding expanded regions in front of the single cylindrical section, the

secondary spikes were reduced, though not eliminated, while the LP volume and projectile velocities
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with different masses measured with 15-GHz interferometer.
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Figure 24. Controlling LP combustion with geometrical changes in the chamber.
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were increased. As more steps with increasingly larger diameters were added to the chamber design,
the secondary pressure spikes were further reduced (Figure 24). Along with these decreases, the
mass of LP increased from 7.6 g in the single chamber to 24.7 g in the three-step four-sectioned
chamber (Figure 3, B17-C geometry). The chamber design with five steps and six cylindrical
sections was intended to provide the most combustion control of the chambers used. Through this
type of analysis, it appears that the ignition and combustion of LP may be controlled somewhat by
adding steps of increasing diameter to the initial cylindrical section. This control of the ignition and
combustion may prove to be beneficial when a high-projectile velocity is desired without producing

extremely high pressures.

4.1.4 Plastic vs. Steel Chambers. The plastic chamber inserts used in the 20-mm gun test fixture
and in the 30-mm gun investigations afforded a quick, inexpensive means of varying the chamber
geometry during explorations of stepped-wall and multichamber configurations. It was always
recognized, however, that the plastic insert would eventually need to be replaced with a steel
chamber configuration. In 20-mm testing, plastic chambers were used for early ignition tests, then
all-steel chambers were used after test 39. In these later tests, the interior dimensions of the steel
chamber were varied in attempt to optimize the combustion within the chamber and had limited
success. One of the objectives pursued in the later 30-mm gun tests (tests 65-115, section 4.1 4.2)
was the systematic reduction of the plastic chamber inserts to obtain a controlled combustion in an
all-steel chamber configuration. These tests were based on the procedure of firing a sequence of tests

in which portions of an all-plastic chamber were replaced by identical steel portions.

4.1.4.1 20-mm Gun tests. Plastic chambers in the 20-mm gun tests were replaced with complete
steel chambers to begin exploring the effects of different step changes on the control of combustion.
This rapid change from all plastic to all steel created large pressure pulses and, at times,
uncontrollable combustion. Therefore, different stepped-wall chamber geometries were investigated
in an attempt to optimize the combustion within the chamber. The preliminary results obtained
indicated that it was unlikely for complete combustion control to be explored safely using steel
stepped chambers alone. This approach was not pursued further in the 20-mm gun tests. The

conversion from plastic to steel was readdressed later in the 30-mm gun tests and approached in a
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different manner. The amount of plastic in the chamber was reduced slowly to incrementally
optimize the initial parameters, and to minimize the poorly controlled combustion in nonoptimal

steel chamber inserts used in tests.

4.1.4.2 30-mm Gun tests. A series of test firings in the 30-mm gun fixture was completed in
which the plastic in the chamber was sequentially replaced section by section with steel in a
cumulative fashion until a significant fraction of the total amount was replaced. In tests 62, 66, 67,
and 81, plastic insert sections were replaced with steel sections starting with the steel replacement
at the projectile end of the chamber. Figure 25 shows the behavior of P-t traces in the second
chamber stage (CH2) obtained in these tests. Test 62 used the all-plastic AAB chamber (Figure 6).
Test 66 used the 701s and 701p chambers, test 67 used the 702s and 702p chambers, and test 81 used
the 703s and 703p chambers. These steel and plastic chambers (designated as “s” and “p” at the end
of the chamber number) are shown in Figure 7. The plastic and steel chambers in tests 66 and 67
were combined to create the AAB chamber geometry, and the chambers in test 81 combined to create
the AAB-1 geometry. Both the AAB and AAB-1 chamber geometries are shown in Figure 6. The
AAB geometry consisted of a 16-mm first-stage diameter, a 20-mm second-stage diameter, a 24-mm
third-stage diameter, and a 30-mm fourth-stage diameter. In the AAB-1 chamber geometry, which
is very similar to the AAB chamber, the first three stages had the same diameters, but the fourth-
stage diameter of the AAB-1 was 28 mm with a small 30-mm step at the end of the insert. This
small 30-mm step was added to all chambers after test 72 in an attempt to reduce spurious test results
associated with the loading procedure. The reduced fourth-stage diameter and the small step at the
projectile end of the chamber, however, were not considered to adversely affect the generated
chamber pressures in test 81, as compared to tests 62, 66, and 67. The series of these four tests
(Figure 25) used the same booster load (500 mg) and booster load density (0.455 g/cm®). The end
result of this stage of testing was a chamber configuration that was all steel, except for a plastic first-

chamber section.

The P-t traces for the sequence of tests shown in Figure 25 tend to exhibit similar pressure

magnitudes and shapes, even though some minor differences in the short-duration pressure pulses
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are apparent. It will be observed, however, that an increased number and size of pressure pulses
appear as noise in the trace (chamber pressure in position 2) for the chamber insert with the greatest

amount of steel.

Since it was suspected in the 20-mm test firings that steel near the igniter end caused major
pressure pulses to occur during the ballistic cycle, the plastic in the first-stage chamber section in this
phase of 30-mm test firings was reduced carefully. Steel cylinders with increasing thicknesses were
used outside the plastic inserts to systematically reduce the volume of plastic inserts without
changing the interior diameter of the first-stage section. These replacements (Figure 8, chambers
B17-0002-1 to B17-0002-3) were combined with chamber 703s (Figure 7) to achieve 3-step, four-
stage chamber inserts with a 16-mm first-stage diameter, 20-mm second-stage diameter, 24-mm
third-stage diameter, and a 28-mm fourth-stage diameter. The small 30-mm step at the forward end
of the chamber insert was filled with a plastic disc during loading and was not considered to affect
the generated pressures. Since the P-t behavior in the first-stage section of each chamber tested was
of main interest here, the results obtained using the first-stage transducer CH1 are shown for these
tests. The P-t traces shown previously in Figure 25 were obtained using transducer CH2 and may

be slightly different.

Test 83 reduced the plastic in the first-stage section and used the same mass of booster powder
(500 mg) in the pyrotechnic initiator as in test 81. This proved to increase the pressures in the first
stage significantly (Figure 26). It was speculated that the decreasing compression of the plastic and
the LP in the chamber as a result of a decreasing plastic needed to be accompanied by a “softer”
ignition. This could be accomplished by decreasing the booster load. To test this hypothesis, test
84 was conducted with the same chamber geometry as test 83, but the booster load was reduced by
10% from 500 mg to 450 mg. The resulting P-t trace in test 84 showed a reduction in combustion
delay (i.e., the time from the first appearance of pressure to the time at 70 MPa) and in the peak
pressure created in chamber 2. This combustion delay, being shorter, produced a pressure trace
similar in appearance to test 81, which had a larger volume of plastic in the first stage and a larger

booster load. The series of these three tests is shown in Figure 26.
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During tests 84-86, some unexplained pressure pulses were observed that were attributed to the
modular form of the fixture hardware. As a result, the hardware design was modified by reducing
the number of parts in the chamber, and a one-piece steel chamber was fabricated, which could
accept various inserts. The plastic/steel insert combinations are shown in Figure 9 with the one-
piece steel chamber design. This hardware modification was used in tests 87-115 to reduce the
volume of plastic in the first-stage section of the chamber along with reducing possible test artifacts

associated with the modular design.

As the wall thickness of the acrylic was reduced below 2.5 mm, the acrylic fractured and possibly
affected the combustion results. The acrylic plastic was replaced by the more ductile Delrin. A
thickness of 2.5 mm of white Delrin was used in the first stage of the chamber for the remaining

tests.

In tests 85—-115, the booster mass was reduced as the volume of plastic was decreased in the first
stage to obtain P-t traces that were similar to the P-t trace in test 81. As testing continued, it was
found that the load density of the booster (booster mass/booster housing volume) was also important
in estimating the correct booster configuration for continued plastic reductions. As the plastic
thickness approached all steel, the relation of booster mass-to-plastic wall thickness was used to
more closely predict the booster configuration for more tests. The correspondence of booster mass-
to-plastic wall thickness required to achieve approximately the same P-t performance in the first-

chamber section is shown in Figure 27.

Combustion delay time was used as an operational correlation parameter for the data obtained
as a result of reducing the amount of plastic in the combustion chamber, from an all-plastic stepped-
wall chamber to a mostly steel stepped-wall chamber. A combustion delay time of less than 200 ps
produced a controlled ignition of the LP. The term “controlled ignition” refers to the early, self-
sustained chamber combustion evolution in which the pressure increases fast enough to not result
in a pressure spike. Figure 8 provides an example of a controlled (test 88) and a less controlled (test
86) ignition. When a longer ignition delay occurs, a pressure spike appears near the beginning of
combustion, and this spike subsequently produces uncontrolled pressure waves that affect the

remaining chamber combustion evolution.
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Tests 111, 113, 114, and 115 were completed with no plastic in the first-stage section. The initial
results of the all-steel chamber configuration testing were encouraging, but later results were almost
catastrophic. The P-t peaks in tests 111 and 113 occurred within the first 4 ms of the event, but for
test 114, it occurred at 48 ms, and for test 115, it occurred outside the 64-ms data acquisition
window. These results were puzzling at the time, so a first-stage Delrin sleeve with a thickness of
1.27 mm was used from that time on. Later, it was speculated that, since the first-stage section of
the steel chamber may not have been thoroughly cleaned (or polished) before each test in this series,
there could have been an increasing amount of off-colored char-buildup in the first stage from test

111 to test 115. The worsening pressure traces from test 111 to 115 are shown in Figure 29. This

suggested that radiation might play a significant role in the ignition of the LP.

To test this hypothesis, test 132 was run to study the effect of chamber reflectivity on ignition.
This was accomplished by replacing half of the white Delrin with black Delrin. These two halves
were 1.27 mm thick, and the white Delrin section was closest to the igniter end of the chamber.
White Delrin was replaced with black Delrin to produce a test condition in which the radiant energy
of the booster ignition would be partially absorbed. This slight change in the white Delrin proved
to be very detrimental to the ignition of the LP. After the booster pressure reached its usual peak of
approximately 450 MPa (Figure 30), there was no noticeable pressure increase in the chamber or
barrel until after the 64-ms window had been reached. Since the velocity of the projectile in this test
was similar to that in other tests, it was assumed that the pressures were not drastically different in

magnitude from the pressures found in test 81.

The tests reducing the plastic chambers to all steel were very important in obtaining chamber
configurations suitable for potential use in actual gun applications. Results obtained here indicated
that the peak chamber pressures in properly ignited test guns that yield “normal,” one-humped, P-t
traces were determined primarily by the geometrical size and shape of the first-stage section, the
compressibility, and maybe by the reflectivity of the material in the first-chamber section. Using a
properly sized plastic first-stage section, the remainder of the plastic chamber insert can be replaced

mostly with an all-steel insert without altering the combustion performance. Further reduction of
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the plastic in the first-stage section of the chamber insert had little effect on combustion
performance, provided the pyrotechnic initiator was properly sized. As the plastic in the first-stage
section was reduced from a wall thickness of 1.27 to 0 cm, the initiator (booster) load Hercules
Unique Canister Powder needed to be reduced while keeping the range of booster load densities
between 0.40 g/cm’ to 0.46 g/cm®. The single black Delrin test result, when compared with other
tests with white Delrin in the ignition region of the chamber, also suggested that the color of the
Delrin may be more important as a consistently absorbing material rather than as a buffering
material. This implies, as indicated in Figure 27, that the main features in transforming the
combustion behavior observed in plastic chambers to those expected in all-steel chambers can be
carried out completely and may depend primarily on parameters associated with ignition and
combustion that occur within the first chamber section. This approach of transitioning from all-
plastic to nearly all-steel chambers has not been carried out for the 20-mm BLPG case. It has been
successfully applied to a similar 40-mm test gun in which the plastic first-stage section of steel

combustion chamber was replaced with mostly steel [10, 11].

4.1.5 Reproducibility Tests.

4.1.5.1 20-mm Reproducibility Series. Early exploratory 20-mm gun firings conducted under
this program included a set of reproducibility tests. Six tests (tests 11, 18, 19, 20, 21, and 22) were
run to investigate the variability of the peak chamber pressures and the muzzle velocities using a
simple one-step, two-section plastic chamber (Figure 4, chamber geometry H). The chamber
consisted of a first-stage diameter of 11.5 mm and length of 19.5 mm, and a second-stage diameter
of 20 mm and length of 78 mm. A CCI-400 primer initiated the 250 mg of Unique within the
booster housing and that, in turn, ignited approximately 38 g of XM46 in the chamber to propel the
99-g M55A2TP projectile. The chamber geometry and ignition parameters were not optimized,
therefore, reproducibility of this set is only considered to be fair. It is, however, indicative of a
moderate degree of controlled combustion behavior. The P-t traces obtained from these tests are
shown in Figure 31. These P-t traces were very similar in shape, the peak pressures were at an

acceptable level of approximately 330 MPa, and adequate muzzle velocities averaging 888 m/s were

61



Test Projectile Velocity (m/s) Peak Pressure (MPa)
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Figure 31. Chamber pressures generated during six 20-mm reproducibility tests using identical

initial test parameters.

obtained. The standard deviation in the peak pressures was +8.4%, and for the projectile velocities,

it was +4.4%.

4.1.5.2 30-mm Reproducibility Series. A set of reproducibility tests was run that utilized the

modified 30-mm gun test fixture described earlier in the experimental setup section of this report.

The main features of this gun included
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« high-pressure seals between the breech and chamber insert and between the chamber insert and

barrel face to reduce gas leakage;

» clearance holes in the gun chamber to allow for pressure transducers to be inserted directly into

the chamber insert;

« two standard-mount transducers and one flush-mount transducer in the chamber insert;

« a projectile modification with a Delrin rotating band, a steel washer, and a hemispherical

attachment that pressed into the front end of the chamber; and

« aloading procedure reducing the amount of silicone grease.

A mostly steel, three-step chamber having section diameters of 16 mm, 20 mm, 24 mm, and
28 mm was used for this set of reproducibility tests. The first-stage steel section was lined with a
1.27-mm (0.050 in)-thick white Delrin tube with a final inside diameter of 16 mm, and the front
three chambers were of steel. All of these tests used the same type of primer (CCI-400), an axial
booster housing with a 0.562-cm? capacity containing 255 mg of Unique canister powder as the
booster charge, a 1.32-mm booster orifice diameter, approximately 85 g of XM46 LP as the main
charge, and a modified GAU-8 30-mm projectile (approximately 355 g) with a Delrin and steel base
region modification. This particular chamber configuration was not optimized, but had well-behaved
P-t results. The smoothed P-t traces for the five tests of this series are shown overlayed in
Figure 32(a) along with the displacement of the projectiles with time in Figure 32(b). A 20-point
moving average was used on these curves so that comparisons could be made more easily. Although
the rapid pressure pulses were significantly reduced with the modifications, some noise was still
present. The peak pressure variation indicated a mean value of 409 MPa with an unbiased standard
deviation of 5.3%. It is interesting to note that test 153 was fired as a repeat test several months after
the other tests in the series. Although there was a rapid increase in the chamber pressure during this
test, the movement and final velocity of the projectile, as a result of this pressure, was very similar

to the other tests. The difference in pressure development may have been a result of barrel growth
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from previous tests. The reproducibility in the projectile velocity is also considered to be good with

an unbiased standard deviation of +1.2% and about an average muzzle velocity of 691 m/s.

Muzzle-velocity values were obtained from timed intervals between each projectile passage
through paper-breakstrip switches placed at known distances apart. The breakstrip velocities are in
good agreement, and the microwave interferometer measurements made of projectile travel in the
barrel during tests (Figure 32[b]) proved to have very similar projectile displacements with time
down the barrel. The projectile velocity data obtained here using breakstrip switches are considered
to be more accurate for the tests conducted here than the velocities obtained using the interferometer.
The interferometer-derived velocities at 1 cm and at the muzzle of the barrel (2.06 m from the initial
position of the projectile in the gun) tend to correlate (i.e., when the velocity at 1 cm was high, the

muzzle velocity was low).

The 30-mm reproducibility tests were encouraging, but there were inconsistencies present during
the tests. Two tests (tests 125 and 126) were completed in which the velocities were significantly
different from the velocities for the reproducibility tests. The velocities obtained by the use of
velocity screens after the projectile was out of the gun were about 85 m/s faster in tests 125 and 126,
although the pressures in the chamber were very similar to those in the reproducibility series
(Figure 33). In Figure 33, test 121 was selected to illustrate the reproducibility series because it had
the highest velocity of the five. The displacement curves for the three tests (Figure 33) physically
indicate why the velocities are higher. The projectiles were initially accelerated about the same in
all three tests, but after about 1.75 ms, the projectiles from tests 125 and 126 continued to accelerate
to the end of the barrel, while the projectile from the reproducibility test moved with a much lower
acceleration rate. The velocities derived from the interferometer displacement curves also show that

the projectile in test 125 was 137 m/s faster and in test 126 was 96 m/s faster than test 121.

The pressure at the first noticeable sign of projectile movement was recorded for each test. This
pressure is known as the shot-start pressure. In tests 125 and 126, these shot-start pressures
(Figure 33) were higher than those in the other reproducibility tests. This was initially considered

to be the principal cause of the large velocity differences. On further inspection of the displacement

65



b)

Figure 33. (a) Chamber pressures and (b) projectile displacements with time for one reproducibility

T
} Test | Projectile Velocity (mys) |  Peak Pressure (MP3)
! 121 I 706 i 126
; 125 ! 790 ! 480
600 — 126 | 791 ! 330
VDELRIN INSERT (127 ma thick)
500 =~ /_/; Test 125 | \
)
Test 121 | / |
A S ZUS—
=00 \f\\/ i Test 126 *
= Y i | |
< '\'\ 16.00mm 20.00mm 2€.00mm 28.00mn
2 Y
W
300 + 4
200 T
100 + k
0 , ‘
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)
2.00
Test Start Pressure IFT Derived IFT Derived
1.80 ~ Number (MPa) Velocity at 1 em. (m/s) |  Muzzle Velocity (m/s)
i 121 35 55 717
[ 125 | 43 42 854
1.60 - | 126 ! 70 43 813
1.40 +
£ Test 125 |
51.20 + T X ~~ Test 121
5
g
100 1
2
2
5 0.80 ~
2
T 0.60 4
0.40 -
0.20 L+
0.00 L L . .
000.0E+0 500.0E-6 1.0E-3 1.5E-3 2.0E-3 2.5E-3 3.0E-3 3.5E-3
Time (s)

4.0

test and two inconsistent tests.

66

4.0E-3




data, it appears as though another unknown feature may have been present that affected the projectile
displacements near the center and muzzle of the barrel. This is because the projectiles in these two
tests continued to accelerate with noticeable pressure differences at CH1 (higher than that exhibited

in test 121) in the later portions of their P-t curves.

4.1.6 Stepped-Wall, Rear Couple. This stepped-wall, rear couple examination had a three-fold
objective in this program. The first was to determine if the moderate degree of combustion control
observed in other work at Veritay [7, 8, 12] using the LP OTTO II could be maintained when the LP
XM46 was used instead at both the 20-m and the 30-mm gun scale. The second was to determine
whether the effects on overall peak chamber pressures arising from increasing the first-stage
diameters and lengths would still be operative and provide useful geometrical means of influencing
combustion control. The third was to use these findings early in this program to explore whether
significant high-pressure combustion problems might arise in a 20-mm gun chamber if the projectile
mass typically used in this gun increased in a step-by-step manner to a greater projectile mass often
used in a 30-mm gun. The absence of such potential combustion problems would, thereby, enable
straightforward scaling of the 20-mm gun to a2 30-mm size. This third item of projectile mass scaling
was briefly discussed earlier (section 4.1.2) and is noted briefly here in conjunction with combustion

control explorations.

4.1.6.1 First-Stage Diameter Changes. The effects on peak pressures from increasing first-stage
chamber diameters were explored early in the 20-mm and 30-mm gun tests in this effort. In these
situations, the first stage in the chamber was the cylindrical section closest to the igniter (rear of the

chamber).

In the 20-mm tests, the H- and I-type plastic chamber geometries were used to investigate the
effects of increasing the first-stage diameter on the combustion pressures. The H-type chamber
insert consisted of a first-stage diameter of 11.5 mm (19 mm long) and a second-stage diameter of
20 mm (78 mm long). The only difference in the I-type chamber insert was that the first-stage
diameter was increased from 11.5 mm to 16 mm (Figure 4). All other dimensions were identical.

Tests 27 (H-type) and 25 (I-type) used a 335-mg booster mass in a 0.69-cm’ booster housing cavity,
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a booster orifice diameter of 1.7 mm, an LP mass from 40 g to 42 g, and a projectile mass of 66 g.
Similarly, tests 33 and 24 used a 420-mg booster mass in a 0.69-cm’ booster housing cavity, an
orifice diameter of 1.32 mm, and a projectile mass of 199 g. In both of these situations, the pressure
rise rates in the chambers increased approximately the same, but the peak pressures were higher with
the larger first- stage diameters (Figure 34). Generally, changes from chamber type Hto I (diameters

from 11.5 mm to 16 mm) changed the peak chamber pressures and velocities in the 20-mm gun

(Table 3).

The peak chamber pressures (generally taken at location CH2) increased when a large booster
orifice diameter of 1.7 mm was used, and decreased (except in one test of the largest projectile mass)
when a small booster orifice diameter of 1.32 mm was used (Table 3). The projectile velocities, in
turn, generally increased when the large booster orifice of 1.7 mm was used. When a small booster
orifice of 1.32-mm diameter was used, the limited results were mixed. For the 66-g projectiles, the
velocity remained nearly constant in one case and increased a small amount in two other cases; for
the 99-g projectiles, a velocity decrease was observed; and for the 199-g projectiles, a small velocity

increase was observed.

In the 30-mm test firings, the first-stage diameter was increased in plastic chamber inserts to
investigate the effects on the pressure development. Unlike the H- and I-type chambers, the first-
stage diameters in the 30-mm gun tests were increased by moving the second-stage diameter to the
first stage and lengthening the last stage (the 30-mm diameter section). Therefore, the
11.5/16/20/24/30 chamber in test 60 turned into a 16/20/24/30 chamber in test 62, and into a
20/24/30 chamber in test 63. These were identified as the AAA, AAB, and AAC chambers in
Figure 6 in the setup section of this report. The results of this series of tests (Figure 35) were similar
to those found in the 20-mm test firings; the peak pressures increased as the first-stage diameter

increased.

In test 64 (not shown in Figure 35), the second stage (24-mm section) was decreased from test 63
and added to the length of the 30-mm section. The results of test 64 showed that the peak pressure
was higher than that in test 62 (first-stage diameter of 16 mm), but the duration of the high pressures
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was shorter. The difference from tests 63 to 64 indicated that the step lengths after the first section
may be important in controlling and sustaining the combustion in the chamber, but confirmation with

further test results are recommended.

4.1.6.2 First-Stage Length Changes. Along with investigating the effects of changes in the first-
stage diameter, three tests were completed in which the first-stage lengths were increased. The
lengths were increased from 30.5 mm in test 153, to 35.6 mm in test 160, and to 40.7 mm in test 156.
These tests used modifications to the mostly AAB-1 geometry (2.27 mm of Delrin in first stage) with
a 16-mm first-stage diameter, a 20-mm second-stage diameter, a 24-mm third-stage diameter, and
a 28-mm fourth-stage diameter. As the lengths were increased in the first stage, they were removed
from the fourth-stage length. These changes affected the pressure traces by decreasing the magnitude
and duration of the pressures within the chamber (Figure 36). This suggests that the longer first
stage controlled the growth of initial combustion following ignition by constraining the LP burn

surface for a longer period within the small-diameter first stage.

4.1.7 Velocity Scaling. During this effort, the forward sections of the chamber were varied in
an attempt to investigate the effects on the chamber pressures and projectile velocities. Findings
from the multichamber tests (section 4.2.1) suggested that increasing the diameter in the last section
of the chamber to a size larger than the barrel-bore diameter and then tapering the chamber down to
the bore diameter increased the velocity without significantly increasing the chamber pressure.
Therefore, this arrangement was also investigated in the stepped-wall configuration. Three tests
were run with increasing diameters in the fourth-stage section of the AAB-1 chamber. The first stage
(with a Delrin insert of 1.27-mm thickness) had a 16-mm diameter, the second had a 20-mm
diameter, and the third had a 24-mm diameter section. The last-stage diameter in test 153, and in
the other reproducibility tests (tests 118, 121, 123, and 127), was increased in test 154 to a diameter
of 32 mm and then was tapered with a 5° chambrage to the bore (Figure 11, AAB1-B). In test 155,
the fourth-stage diameter of 37.7 mm was tapered with a 12° chambrage to the bore diameter

(Figure 11, AAB1-C).
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Figure 36. Effects of an increasing first-stage length on the pressures generated in a 30-mm gun.

73



Together with the straight fourth-stage chamber configuration, Figure 37 shows the two diameter

increases to the stepped-wall chamber configuration and the resultant P-t curves for each change.
In general, the overall peak chamber pressures did not increase, but were longer in duration. The
resultant projectile velocities increased from 692 m/s with a fourth-stage diameter of 28 mm, to
990 m/s with a 37.7-mm fourth-stage diameter (Figure 37). This finding was encouraging because
the ballistic performance of the 30-mm gun fixture was increased without significantly increasing

the internal chamber pressures by just modifying the chamber configuration.

4.2 Multichamber Configuration. A series of multichamber combustion tests with bulk-loaded
LP XM46 were completed using plastic multichamber inserts. The chamber inserts were initially
fabricated from acrylic, and later were made from Delrin because the acrylic was brittle and
fractured on combustion while the Delrin could be deformed significantly without breaking. It was
important that the material used for inserts be plastic in order to damp possible pressure-wave pulses
that might be encountered during exploratory test runs; these pulses could be detrimental to the
structural integrity of the gun test fixture. The inserts in these cases consisted of the following basic
parts: (1) an input section to control the basic pressure level to be expected during test firings, (2)
the transition region to continue combustion from the input section to the multichambers, (3) the
multichamber region where much of the LP combustion was expected to occur under geometrically
controlled buming conditions, and (4) a transition section where the output of the multichamber LP
combustion was brought back together in a single chamber-chambrage region. The last of these
sections, of course, directed the remaining LP and combustion gas into the barrel. The original
geometry of the multichamber concept, as discussed in the setup section of this report, consisted of
a single, cylindrical, first-stage section followed by a second section containing three cylindrical
tubes, and a third section containing three cylindrical tubes. This configuration was designated as

the 1-3-3 geometry.

In this testing, the attributes of the original concept (1-3-3 configuration) were varied to
investigate the coupling of the front and rear sections of the chamber. Using a design similar to the
1-3-3, the number of tubes used was increased to four and six while keeping the combined cross-

sectional areas of the tube sections constant. Also, the number of tubes in the last-stage section was
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increased from three to nine tubes (Figure 13, 1-3-9 chamber configuration). An extension of the

multichamber concept, the 1-1-19 configuration, incorporated attributes of the stepped-wall chamber

and the multichamber configurations.

4.2.1 Front Coupling. The effect of changing the chamber design in the front section of the
multichamber configuration was investigated first. The “front section” refers to the areas after the

first stage of the multichamber that usually affect the secondary pressures in the combustion results.

Since difficulties were expected in controlling an increased rate of combustion in the transition
region between the third-stage chamber section and the single 30-mm bore of the barrel, a smooth
transition geometry was included in the multichamber assembly by means of an inserted component.
In Figure 12, this was referred to as the transition ring. This shape was included to reduce the
number of sharp corners contained in the geometry that could have allowed turbulence or cavitation
in the LP to develop as the LP passed. It is believed that turbulence and/or cavitation in this area can

cause an unwanted increase in combustion to occur in or near the breech end of the barrel.

4.2.1.1 Tapering. The initial test (test 134) in the 30-mm multichamber phase of testing was
conducted using the 1-3-3 insert chamber geometry. This geometry consisted of a 11.5-mm first-
stage diameter, three 13.5-mm diameter second-stage tubes, and three 16.7-mm diameter third-stage
tubes. The equivalent diameters of the combined tube areas in each stage were 11.5 mm, 23 mm,
and 29 mm, respectively. When this design was used as a chamber insert, it produced a P-t trace
with a large, secondary pressure spike. Because of this undesirable “double-humped” curve, it was
determined that the transition region at the front of the chamber alone was not enough to alleviate
fluid-dynamic effects (such as turbulence, cavitation, or droplet formation) and subsequent secondary
ignition within the barrel. As a result, the area of plastic between the three third-stage chambers was
tapered to reduce the square edges at the ends of the tubes. This transition tapering proved to be an
important addition to the design of the multichamber in test 135 because it eliminated the secondary
high-pressure hump observed in test 134. The pressures generated in the first-stage section of the

chamber for the tests without and with tapering are shown in Figure 38. Since the pressures in the
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beginning part of these curves are very similar, it is evident that changes in the front of the chamber

affected the pressures after the initial peak pressure.

4.2.1.2 Second-Stage Diameter. The second-stage diameters were also varied to continue
investigation of the effects of changes in the front of the chamber in a 1-3-3 geometry. The three
cylindrical tube diameters of the second stage were increased from 13.5 mm each in test 137 to 14.7
mm each in test 138. The result of this increase in diameter (Figure 39) is a secondary combustion

pressure spike in the P-t trace (CH2) as compared to test 137 (discounting the early pressure peaks
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in test 37 as a spurious signal). A test under the same conditions (test 139) produced similar results
(Figure 39). The origin of the secondary pressure pulses in these tests remains unknown, but appears
to be related to an enhanced rate of combustion following passage of the flame front into the third
stage tubes—possibly initiated by use of the somewhat larger second-stage tubes than used

previously.

4.2.1.3 Third-Stage Diameter. Further investigations involving the combustion pressure changes
arising from changing the third-stage tube diameters were conducted for tests 142 and 143. These
chambers had a first-stage diameter of 16 mm and a second-stage tube diameter of 13.5 mm. The
third-stage tube diameters were increased from 16.7 mm to 17.3 mm. The pressures in the chamber
decreased slightly when the diameters were increased from 16.7 mm to 17.3 mm. These results are
shown in Figure 40. Again, the exact cause of this slight pressure decrease is unknown. In fact, the
increase in third-stage chamber diameter, by analogy with the previous case of a similar increase in
the second-stage diameter, might be expected to yield a small pressure increase, rather than the
pressure decrease actually observed. Perhaps this small pressure decrease was within the normal

uncertainty in the combustion pressure for these nonoptimized chamber configurations.

4.2.2 Number of Tubes. The 1-3-3, 1-4-4, 1-6-6, and 1-3-9 multichamber-type tests include tube
diameters at each stage location with equivalent surface areas of a 20-mm diameter first-stage,
24-mm diameter second-stage, and 30-mm diameter third-stage stepped-wall chamber configuration
(20 mm/24 mm/30 mm). To create the 1-4-4 configuration, the second-stage tube diameters were
decreased from 13.5 mm to 11.7 mm each and the third-stage tube diameters were decreased from
16.7 mm to 14.4 mm. The 1-6-6 configuration was created by decreasing the second-stage tube
diameters from 13.5 mm to 9.5 mm and the third-stage tube diameters from 16.7 mm to 11.8 mm
as compared to the 1-3-3 configuration. The six tubes could not be centered on the same centerline
as the 1-3-3 and 1-4-4 configurations because the wall thickness between the tubes was reduced to
zero. Therefore, the centerlines of the six tubes were moved away from the center of the chamber.
In doing this, the angle of the second stage and the area between the tubes in the third stage was

increased. This area created between the tubes was tapered using the same angle as with the 1-3-3
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design, but the depth of the cut was larger. The 1-3-9 multichamber configuration used in test 148
consisted of a single cylindrical first-stage section, three cylindrical second-stage sections, and nine
cylindrical third-stage sections. The diameters of these sections were 20 mm, 13.5 mm, and 9.6 mm,

respectively, with equivalent section diameters of 20 mm, 24 mm, and 30 mm.

The first three P-t traces shown in Figure 41 are from 30-mm test gun firings using the 1-3-3,
1-4-4, and 1-6-6 multichamber configurations listed in the figure. The P-t traces for the 1-3-3, 1-4-4,
and 1-6-6 multichamber tests are very similar, and all three tests tend to show good combustion
control. As compared to the pressure traces for the 20-mm/24-mm/30-mm plastic stepped-wall
chamber configuration used in test 63 (Figure 42), the multichamber configurations show similar
combustion control, but with lower peak pressures (from about 500 MPa to 400 MPa). Also, the
muzzle velocities were very similar. All the P-t traces listed in Figures 41 and 42 were recorded in

the CH1 position.

The P-t trace for test number 148 (Figure 41) shows that the use of the 1-3-9 chamber
configuration exhibited difficulties in its ability to sustain LP combustion. This is observed by the

rapid drop in pressure, seen in the P-t trace, at approximately 0.8 ms.

4.2.3 Rear Coupling. Early in this work, it was apparent that the condition of the rear section
of the chamber insert was important to the initial ignition and the efficiency of the LP combustion.
To investigate this feature further, some of the attributes of the first-stage section of the
multichamber were varied. Length and diameter were increased, and the section was stepped in an

attempt to control the ignition.

4.2.3.1 Diameter Changes. Tests 135, 137, and 145 were completed to investigate the effect of
diameter changes to the first stage of the multichamber (Figure 43). The basic 1-3-3 configuration
was utilized with first-stage diameters of 11.5 mm, 16 mm, and 20 mm. The second-section tube
diameters were 13.5 mm and the third-section tube diameters were 16.7 mm each. The equivalent
section diameters for the second and third stages were 24 mm and 30 mm, respectively. These

diameter increases proved to be important in increasing the overall chamber pressures to a reasonable
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operating condition (Figure 43, tests 135, 137, and 145). Reasonable operating pressures were
necessary to obtain efficient LP combustion. The increase in the first-stage diameter may have
spread the burning and allowed for more ignition of the LP when one tube transitioned into the three

tubes.

4.2.3.2 Length Changes. The length of the first-stage section was also varied to investigate its
effect on the combustion results. The length was decreased from 30.48 mm in test 135 to 25.4 mm
in test 142. Multichamber tests 134-140 and 145-152, inclusive, contained a first-stage section that
was 30.48 mm long, while tests 141-146, inclusive, contained a 25.4-mm long first stage. The
pressure results of these tests in Figure 44 indicate that the change in the lengths did not significantly
affect the pressures generated in the chamber during combustion. The high-pressure spike, which
is observed in the chamber pressure position 2, curves for both tests (135 and 142) in Figure 44 and
does not appear in any of the other pressure-tap locations during these tests. Since this spike only
occurs in the position 2 port, the cause may be attributed to the port itself. Similar pressure spikes

in the position 2 location only occurred in most of the 30-mm multichamber test firings.

4.2.4 Extension of Concepts. The 1-3-3 concept performance was extended by combining
attributes of the stepped-wall chamber and the multichamber configurations. This concept
configuration began using a single first- stage section; this then expanded into a larger second-stage
section, and then transitioned into a 19-tubed third-stage section. At the projectile end of the
chamber insert, the tubes were feathered with a 10° taper to reduce possible cavitation and secondary
ignition down the barrel during combustion. The cross-sectional view of each section change and
the cut-away side view of this chamber design is shown in Figure 14. In these tests, the projectile

was pressed into the forward end of the chamber just as the other multichamber designs.

The 1-1-19 multichamber configuration used in tests 149 to 152 included a single 20-mm
diameter first-stage, a 35-mm second-stage, and 19 tubes 5.5 mm in diameter with an additive
equivalent diameter of approximately 24 mm. The short second-stage region (from 5 mm to
15.24 mm in length) of this configuration allowed the I.P combustion to extend to the farthest of the
19 tubes and, thus, caused early LP initiation to transfer into the 19 tubes. As shown in Figure 45,
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the 1-1-19 configuration had a double-humped pressure trace when a 5-mm second-stage was used
in the insert design. As the length of the second stage was increased to 10.16 mm in test 151, then
to 15.24 mm in test 152, the double-humped pressure curve persisted and increased in magnitude
(Figure 45). This 1-1-19 configuration results in many pressure spikes and tends to behave in an
unstable manner, but due to the limited amount of testing done with this configuration, it is

impossible to make any conclusions about its ability to control combustion.
5. SPURIOUS TEST RESULTS, SOURCES, AND CORRECTIONS

The combustion performance tests in past BLPG systems are replete with alleged spurious and
occasional catastrophic high-pressure results that have been attributed to random instabilities and
unpredictabilities associated with the dynamic behavior of the LP and gas dynamics during the
ballistic cycle. Investigative efforts based on rather extensive testing of bulk-loaded LP test guns
at Veritay, including the program reported here, have indicated that ignition-combustion coupling,
the use of chamber geometry and boundary constraints, and the reduction/correction of certain
configuration details of test guns can all impact the achievement of controlled combustion evolution
and behavior in BLPG systems. Particular attention is given in this section to selected configuration

details of test guns that were identified as sources of certain, but common, spurious test results.

5.1 Pressure Sealing of Insert Chambers. The 30-mm single-shot modular test gun fixture
(Figure 46) was utilized in early firing tests under this program. This modular gun configuration was
chosen to facilitate changing the gun chamber geometry without having to rebuild the entire gun or
gun chamber for testing each different chamber arrangement. This test gun was originally fitted with
a chamber insert consisting of a plastic or steel interior chamber of selected geometry for combustion
testing, surrounded by a 17-4 PH steel sleeve, heat-treated to RC 42, that provided added strength

and reduced the overall compressibility of the combined insert.

The interior plastic chamber insert was fabricated with an outside diameter that provided a force
fit of this insert with the inside of the steel insert sleeve. The outside of this steel sleeve was

fabricated undersize by about 0.076 mm (0.003 in) to the inside diameter of the chamber bore in the
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17-4 PH steel chamber housing. This provided clearance for assembly of the overall insert/sleeve

chamber unit since it was filled with LP outside the test gun before insertion into the gun. The
sleeve-to-chamber clearance region and the transducer ports were coated or filled with silicone

grease to fill void spaces between the chamber insert and housing after assembly.

This arrangement did not provide a reliable pressure-tight seal either between the sleeve and
chamber housing, or at the ends of the chamber insert (because of longitudinal expansion of the
overall chamber housing relative to that of the insert). Further, gas and/or LP leakage around the
ends of the chamber insert could sometimes pass radially along the ends of the chamber insert and

then along the cylindrical steel-to-stee] interface and cause spurious pressure pulses to register on

pressure transducers.

A later 30-mm gun test fixture (Figure 17) used a one-piece, heat-treated 17-4 PH steel chamber
insert. The ends of the chamber insert were machined perpendicular to the tube axis to provide tight
fits against surfaces of similar perpendicularity (at the breech end a plug with pyrotechnic igniter and
at the forward end of the base of the barrel). A Viton o-ring at each end of the chamber insert was
trapped in corresponding grooves in the mating steel parts and each formed an effective high-
pressure seal to contain liquid LP and LP combustion gas during test firings. The pressure
transducers were mounted and sealed directly in the steel insert sleeve so that leakage of interface

gas or LP was avoided.

Later, these same high-pressure end seals were used in the steel insert sleeve of the early test gun
fixture of Figure 46. This arrangement significantly improved the realism of measured P-t traces

obtained during a few test firings conducted in the modified early type test gun fixture.

5.2 Reducing Spurious Pressure Pulses. A variety of spurious pressure pulses have been
observed in experimental P-t traces associated with a range of test gun chamber configurations and
initial test conditions in this project. By using more than one pressure transducer in the gun
chamber, it was sometimes possible to identify the nature and/or general region from which selected

pulses, especially isolated pulses, arose.




Two general types of regular pulses observed tended to be associated with radial and longitudinal
pressure waves moving within the interior medium of the gun chamber, while the latter medium was
experiencing a comparatively slow-changing, high, average pressure. In addition, isolated, single
pressure pulses of rather short duration were sometimes observed within P-t traces. Each such pulse
appeared to arise near the location of the projectile at front of the chamber. This type of pulse may

be caused by localized adiabatic ignition of LP in the vicinity of the projectile.

Adiabatic ignition can arise by rapid compression and associated heating of trapped air (and
perhaps LP vapor) to very high temperatures in small regions near the base of the projectile. Since
the LP itself is the pressure-transfer medium in immediate contact with the trapped air, the necessary

conditions of high temperature and pressure for LP ignition can readily by satisfied.

The most likely region where sufficient air could have been trapped near the base of the standard
30-mm GAU-8 projectiles fired under this program was the gap region between the projectile base
and barrel and behind the projectile rotating band. This gap region is shown in the unmodified

projectile portion of Figure 47.

To eliminate trapped air in this gap region, the group of modifications to the projectile base area
considered is shown together in the modified projectile base portion of Figure 47. This modified
base region eliminated the airgap by using a plastic sleeve around the base of the projectile aft of the
rotating band. To preclude interfering with the rotating band integrity and attachment to the
projectile, a small gap was left between the band and the sleeve. The projectile base was machined
to a smaller diameter to enable a plastic (Delrin) sleeve of a workable thickness to be force fit over
this new diameter. This plastic sleeve was held in place by a steel washer-type plate, slightly smaller
in diameter (for clearance) than the lands in the rifled barrel, and this washer was attached to the

projectile base by an on-axis bolt (not shown).

In addition, Figure 47 also shows a plastic disk and a plastic hemispherical cap attached to the
base of the projectile. These, taken individually or together, were candidates for buffering pressure

pulses, which typically arose near the base of the projectile during these test firings.
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Figure 47. Base of unmodified 30-mm projectile and modified configuration to reduce spurious
high-pressure pulses arising from this region.
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The first 30-mm gun test using a wave deflector attached to the base of the projectile was
test 117. Prior to test 117, the 30-mm gun firings contained pressure pulses that originated near the
base of the projectile. This was determined by examining the P-t data, which showed the pulses

occurring in the CH3, CH4, and CHS5 locations at an earlier time than the CH1 and CH2 locations.

The sequence of projectile gap and base modifications actually fired in tests are shown in
Figure 5, together with the standard 30-mm GAU-8 projectile that was the prototype. The results

of these tests are not shown in detail in this section, but can readily be summarized.

Each projectile that was fitted with steel (plate or hemisphere) at the base did not give sufficient
pulse attenuation to merit further consideration. These included the first, fifth, sixth, and seventh

modifications.

The second modification emphasized filling the airgap about the remachined projectile base, as
noted previously. This particular base modification failed because the Delrin base structure failed
mechanically under the high chamber pressure. The Delrin sleeve part apparently became stuck in
or near the rear end of the barrel; the Delrin hemispherical base sheared from the sleeve and followed
the projectile down the barrel. The remaining stuck tube of Delrin apparently forced the moving LP
into a smaller diameter and then rapidly into a larger diameter. This sudden flow change appeared
to cause either cavitation or significant droplet formation of the LP, and in turn, caused a high-
pressure combustion pulse to form just inside the barrel. The addition of a steel washer to hold the
Delrin sleeve to the projectile base (Figure 5, 3rd modification) in subsequent tests bypassed the low
shear strength of the Delrin and alleviated secondary ignition arising in the airgap region using this
modified standard projectile.

The fourth modification (Figure 5), which used a flat Delrin base as a pulse buffer, did show

some effectiveness, but did not work as well in this role as the hemispherical base used in the third-

modification case.
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In effect, the Delrin plate or hemisphere, together with the sleeve fastened to the projectile base,
tended to eliminate the airgap and secondary ignition and to damp or deflect pressure pulses in the
chamber during combustion evolution. These features significantly reduced the magnitude and the

occurrence of spurious pressure pulses—usually to tolerable levels.
6. CONCLUSIONS

This experimental program investigated the use of mechanical concepts as a primary means of
achieving interior ballistic process control in medium-caliber BLPGs. The overall results of this
program indicate that the stepped-wall chamber approach is a useful technique toward achieving
such control in medium-caliber BLPGs. In particular, the magnitude of the peak pressure has been
shown to be controlled by the diameter and length of the first-stage section (closest to the igniter)
of the stepped-wall chamber geometry in combination with the size of the igniter. The peak chamber
pressure is relatively independent of the mass of the projectile, and the igniter must be tailored to the

system to prevent chamber overpressures as a result of over or under ignition.

The ﬁndings to date have also shown that the multichamber concept for such process control can
be useful, but further exploration of its effectiveness needs to be completed using steel chambers to
confirm its utility for potential BLPG applications. In addition, the combining of a stepped-wall
chamber geometry with a three, four, or more subchamber may have the potential for scaling BLPGs
to sizes larger than medium-caliber, while maintaining control of the interior ballistic process by an

extension of the mechanical concepts explored under this program.

This effort has demonstrated that plastic, stepped-wall chamber inserts can be used effectively
to explore combustion phenomena in a BLPG system, and many of the findings can be effectively
transitioned into a corresponding, mostly steel chamber geometry. However, the phenomena leading

to combustion control must be demonstrated in an all-steel chamber.
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This study has confirmed that LP ignition and early combustion stability in a mostly steel,
stepped-wall chamber can be achieved by proper selection of the booster load for an appropriately

sized first- section chamber element of the overall chamber.

A useful degree of reproducible combustion and interior ballistic behavior has been achieved in
BLPG test fixtures using steel-wall chambers with a first-stage section that contains a thin-walled
(~1 mm) plastic liner, even though the test gun system was not optimized. The peak-pressure values
for one such reproducibility set of firings indicated unbiased standard deviations in peak pressures

of 5.3% and in muzzle velocities of 1.2%.

Changing the 99-g “standard” mass of a 20-mm target practice bullet from an M55-A2 round
over the range of charge-to-projectile mass ratios from 0.1 to 0.6 did not greatly influence the
corresponding peak chamber pressures. The duration of chamber pressures near the peak values

increased significantly as the projectile masses increased.

A range of 30-mm projectile muzzle velocities was achieved by properly selecting corresponding
stepped-wall chamber geometries and propellant charge-to-projectile mass ratios without

significantly altering peak chamber pressures.
It was observed that the efficacy of LP XM46 ignition in the 30-mm test gun appeared to be

influenced by the radiative interaction nature of the chamber wall in the region of earliest growth in

the ignition kernel.
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RESULTS OF THE 20-mm AND 30-mm TEST FIRINGS
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NO. OF

COPIES ORGANIZATION

2

DEFENSE TECHNICAL
INFORMATION CENTER
DTICDDA

8725 JOHN J KINGMAN RD
STE 0944

FT BELVOIR VA 22060-6218

HQDA
DAMO FDQ

DENNIS SCHMIDT

400 ARMY PENTAGON
WASHINGTON DC 20310-0460

CECOM

SP & TRRSTRL COMMCTN DIV
AMSEL RD STMCM

H SOICHER

FT MONMOUTH NJ 07703-5203

PRIN DPTY FOR TCHNLGY HQ
US ARMY MATCOM
AMCDCGT

MFISETTE

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR ACQUSTN HQS
US ARMY MATCOM

AMCDCG A

D ADAMS

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY CG FOR RDE HQS

US ARMY MATCOM
AMCRD

BG BEAUCHAMP

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY ASSIST SCY FOR R&T
SARD TT T KILLION

THE PENTAGON
WASHINGTON DC 20310-0103

OSD
OUSD(A&T)/ODDDR&E(R)
JLUPO

THE PENTAGON
WASHINGTON DC 20301-7100

NO. OF
COPIES ORGANIZATION

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1  DUSD SPACE
1E765 J G MCNEFF
3900 DEFENSE PENTAGON
WASHINGTON DC 20301-3900

1 USAASA
MOAS AI W PARRON
9325 GUNSTON RD STE N319
FT BELVOIR VA 22060-5582

1 CECOM
PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

1 GPS JOINT PROG OFC DIR
COLJ CLAY
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

1  ELECTRONIC SYS DIV DIR
CECOM RDEC
JNIEMELA
FT MONMOUTH NJ 07703

3 DARPA
L STOTTS
JPENNELLA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 SPCL ASST TO WING CMNDR
50SW/CCX
CAPT P H BERNSTEIN
300 OMALLEY AVE STE 20
FALCON AFB CO 80912-3020

1 USAF SMC/CED
DMA/JPO
MISON
2435 VELA WAY STE 1613
LOS ANGELES AFB CA
90245-5500

107



NO. OF
COPIES ORGANIZATION

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDN A MAJ DON ENGEN
THAYER HALL
WEST POINT NY 10996-1786

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AL TP
2800 POWDER MILL RD
ADELPHI MD 20783-1145

1  DIRECTOR
US ARMY RESEARCHLAB
AMSRL CS AL TA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3  DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GR

3  DIR USARL
AMSRL CI LP (305)

108




NO. OF

COPIES ORGANIZATION

1

DIRECTOR

BENET LABORATORIES

W KITCHENS

USA WATERVLIET ARSENAL
WATERVLIET NY 12189

DIRECTOR

BENET LABS

APPLIED MATH AND MECH BR
B PFLEGL

WATERVLIET NY 12189

COMMANDER

USA ARDEC
AMSTAFSAT

M SALSBURY
PICATINNY ARSENAL NJ
07806-5000

COMMANDER

USA ARDEC

AMSTA FSET GORA
PICATINNY ARSENAL NJ
07806-5000

COMMANDER

USA ARDEC

AMSTA AR AEEB

D DOWNS

A BRACUTI

D CHIU

PICATINNY ARSENAL NJ
07806-5000

COMMANDER

USA ARDEC

AMSTA ARFSS DA

B MACHAK

JIRIZARRY

R KOPMANN
CPERAZZO

PICATINNY ARSENAL NJ
07806-5000

COMMANDER

HQ AMCCOM

AMSMC LSL B KELEBER
AMSMC SAS WF G SCHELENKER
ROCK ISLAND IL 61299-6000

NO. OF

COPIES ORGANIZATION

1

COMMANDER

USA RESEARCH OFFICE

TECH LIB

PO BOX 12211

RESEARCH TRIANGLE PARK NC
27709-2211

PRESIDENT
USA ARTILLERY BOARD
FORT SILL OK 73503

COMMANDANT

USA CMD & GEN STAFF COLL
FORT LEAVENWORTH KS
66027-5200

COMMANDANT

USA SPECIAL WARFARE SCHOOL
REV & TNG LIT DIV

FORT BRAGG NC 28307

COMMANDER

RADFORD ARMY AMMUN PLANT
SMCRA QA HI LIBRARY
RADFORD VA 24141

COMMANDANT

USA FLD ART SCHL
STSF TSM CN

FORT SILL OK 73503-5600

US ARMY EUROPEAN RESEARCH OFC
R REICHENBACH

PSC 802 BOX 15

APO AE 09499-1500

NAVAL RESEARCH LAB
TECHNICAL LIBRARY
WASHINGTON DC 20375

COMMANDER

NSwWC

610 C SMITH

6110J K RICE

6110C S PETERS

INDIAN HEAD MD 20640-5035

COMMANDER

CODE G33 T DORAN
JCOPLEY

DAHLGEN VA 22448-5000



NO. OF

COPIES ORGANIZATION

1

10

NC STATE UNIV

JG GILLIGAN

BOX 7909

1110 BURLINGTON ENG LABS
RALEIGH NC 27695-7909

INST FOR ADV STUDIES
DR H FAIR

DR T KIEHNE
DRIMCNAB

4030 2 W BAKER LN
AUSTIN TX 78759-5329

FMC CORPORATION

B GODDELL

DR D COOK

IDYVIK

4800 E RIVER RD
MINNEAPOLIS MN 55343

ALLIANT TECHSYSTEMS INC
JKENNEDY

MN38 3300

10400 YELLOW CIRCLE DR
MINNETONKA MN 55343

PAUL GOUGH ASSOCIATES INC
P S GOUGH

1048 SOUTH ST

PORTSMOUTH NH 03801-5423

ELI FREEDMAN & ASSOC
E FREEDMAN

2411 DIANA RD
BALTIMORE MD 21209

VERITAY TECHNOLOGY INC
4845 MILLERSPORT HWY

PO BOX 305

EAST AMHERST NY 14051-0305
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